If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200-16t^2-10t=0
a = -16; b = -10; c = +200;
Δ = b2-4ac
Δ = -102-4·(-16)·200
Δ = 12900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12900}=\sqrt{100*129}=\sqrt{100}*\sqrt{129}=10\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10\sqrt{129}}{2*-16}=\frac{10-10\sqrt{129}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10\sqrt{129}}{2*-16}=\frac{10+10\sqrt{129}}{-32} $
| s*6+62=s*10-14 | | 3(x-4)=8x+68-4x | | s*5+40=140 | | x+0.01x=3750000 | | 45x+25=-5-75 | | (69x)+(-x2)=999 | | 3750000=x+0.01x | | 375=x+0.01x | | 1/2n-4=20 | | -10-13n=-75 | | 10w+3=43 | | 4(2a+5)=9a+4 | | 11+3x=55+2x | | 8x=48+2x-6 | | 1-8r=-63 | | 3(4x+5)=5x+3 | | 3(3u+1)=3(u-2)-3 | | 11-3f=35 | | 8x-22=2x+26 | | 10(x+1)=7x+2 | | 10x+10=7x+2 | | 3(2q-2)-6=3(q+2) | | (-4)-(7-x)=-38 | | 9y-15=3y+9 | | 11(l-1)-19=3(l+7)+5 | | 3x-23=19-3x | | 4(3x+2)=4x+6 | | 10(r-2)+2=3(r+3)+8 | | 0=-4^2-(4*(5p-1)*(2p-1) | | 4d+13-18=18 | | (16^3)^-7=16^c | | 3-2(x+2)=15 |